https://www.halvorsen.blog

Linear Algebra in LabVIEW

Hans-Petter Halvorsen, 2018-04-24

P LabVIEW MathScript

File Edit View Operate Tools

Window Help

o =E3

Output Window

| Variables I Script | History l

ans = =~ =
D | @ £ | C:\tempiLabYIEW Data\simple.m I
-0.95892
function [r] = simple{a) ~|
S>A r = sin{a)
A =
1 2
3 4
>>inwvi(a)
ans =
-2 1
1.5 -0.5
>>det (&)
ans =
-2 E
~
s
Command Window

=)
~| o

Line: 3, Column: 11

Preface

This document explains the basic concepts of Linear Algebra and how
you may use LabVIEW for calculation of these problems.

This document is available for download from:

https://www.halvorsen.blog/documents/tutorials

For more information about LabVIEW, visit my Blog:

https://www.halvorsen.blog

and:

https://www.halvorsen.blog/documents/programming/labview/

Table of Contents

=) 1ol TP P PP ROPPPPPPPPP 2
Table Of CONTENTS ...ttt e e e e e e e e e e e e e s eeeeeeeeeas iii
1 Introduction t0 LABVIEWeeiiiiiiiieiieeee et 1
1.1 DatafloOW ProgrammMing...........uuuuuuuuueuiiiiiiirtiiiieiiii e 1
1.2 Graphical Programmingccoeiiiiiiiiiic 2
1.3 21T =) 1 OO PP PP UPPPPPPPPPPPPN 2
1.4 LabVIEW MathScript RT MOAUIEuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiievaeeeaeeaeveeeeeseeenennne 3

2 Introduction to Linear Algebra........cccc i, 4
211 TrANSPOSE ettt e et e e et e e et e e et e e e ea e e eera e eeeanas 4
2.1.2 (D1 ={] o I- 1 SRR 4
2.13 MatriX MUILIPICAtION ...uvviiiiiiiiiiiiiiiiiiii i aeeeaaaaaee 5
2.1.4 MaAFiX AAITION ... 5
2.15 Determinantoouuiimiiiii e 5
2.16 INVEISE IMAtIICES oevvviiiiii et e e e e 5

2.2 BIGENVAIUES. ...ttt bt bt b nt bbbt bt attbtnrtnnrnns 6
2.3 Solving Linear EQUAtiONScoiiiiiiiiii 6
2.4 LU faCTOriZation ..ot e e e e e e e e e e e e 7
2.5 The Singular Value Decomposition (SVD)ccuuvviiiiieeeiiiiiiiiiieeee e e eeciieree e e e e e e 7

3 Linear Algebra Palette in LAbVIEW.........cooiiiiiiiiii 8
3.1 LY=ot (o] PP PPUPPPPT 9
3.2 Y = 8 ol =P PP 10
3.21 TN S POS ittt ettt e et e et e ettt e ettt e e tet e e teta e e neaeaaaes 10

iv Table of Contents
3.2.2 D1 ={] o T- 1 SRRSO 11
3.23 MatriX MUIIPICAtION ...uvveiiiiiiiiiiiiiiiiii e araraeanne 12
3.24 MaAFiX AAITION ... 13
3.25 Determinantoouirimiiii e 14
3.2.6 INVEISE IMAtIICES oevviiiiiie ettt eeeeees 15

33 BIGENVAIUES. ... ettt bbb aa bbbt b aaaatnanrbrnrnes 16
34 Solving Linear EQUAtiONScciiiiiiiiiicccc 16
3.5 LU faCTOFIZatioN oo e e e e e e e e e 17
3.6 The Singular Value Decomposition (SVD)uuuiieieeeeeiiiiiiiieeeeee e eesiireeee e e e e e 19

4 LabVIEW MathScript RT MOQUIE........uuuiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeseeeaeseeeeneeeseseeeereeeeeeannennnrnn 20
5 LAbVIEW MathSCript cooeeiiiiiiiiiiiiiiieeeeeeeeeee ettt e e e e e e e e 21
5.1 =1 S PRSPPRRRR 22
5.2 T T o1 =T3P 22
5.3 USefUl COMMANAS ... e e e e e e e e 25
5.4 FIOW CONTIOL ..t e e e e e e e e e e e e 25
54.1 [f-€1S€ STALEMENT ... 25
5.4.2 Switch and Case Statement.......cooiiiiiiiiiiiiiie e 26
543 20Tl [o o o TSRS 26
5.4.4 WHhIlE 100D e, 26

5.5 2] 1o 1= PRSPPI 28

6 Linear Algebra Examples using MathScript.........cccciiiiiiiiii, 30
6.1 LY=ot {0 3PP PPTPPPPT 30
6.2 Y = 8 ol =P PP 31
6.2.1 TN S POS ittt ettt e et e et e ettt e ettt e e tet e e teta e e neaeaaaes 31
6.2.2 D1 ={] o I- 1 SRRSO 32
6.2.3 L1 07 ={0 1T PSPPSR 32

Tutorial: Linear Algebra in LabVIEW

Y, Table of Contents

6.2.4 MatriX MUIIPICAtION ...uuviiiiiiiiiiiiiiiiiii it aaaraerane 33
6.2.5 MaALFiX ADITION ... 33
6.2.6 Determinantoouuiimiiiii e 34
6.2.7 INVEISE IMAtIICES coevviiiiiie ettt e e e 35

6.3 BIGENVAIUES. ...ttt bttt b natantattbrnrnes 36
6.4 Solving Linear EQUAtiONScoiiiiiiiiic 36
6.5 LU faCTOFIZatioN oottt e e e e e e e e e e e 37
6.6 The Singular Value Decomposition (SVD)uuuvieiieeeeiiiiiiiiieieee e e eesiireeeee e e e e e 38
6.7 COMMANGS ..ttt e e e e e e e bbb et e e e e e s e s bbb et e eeeeeeesnnnnnneees 39

2 \Y/ - 11 ¢ Yol g T o o o [P PPPPPPPPPPPP 40
7.1 Transferring MathScript Nodes between COMPULETSuvvvvvvivuuveeiieriiriereieenennns 42
7.2 T T g o1 =T3S 42
7.3 =T o1 =T PP P PP 46

8 Whats NEXL?... eiiieieiiiie ettt e e e e e e e e e e e e e e s bbb e e e e e e e e e s nnnnrnees 47
8.1 [V 2] o - PP PO PU PPN 47
8.2 1101147 SO TP UPPPPPRRPPPIRt 47
8.3 MathSCript FUNCEIONS. .. .uuuiiiiiiiiiiiiiiiiiiii e neaaeesaeeseeenes 47
QUICK REFEIENCE ... e e e e e e e e e e e e e s eanneeees 49

Tutorial: Linear Algebra in LabVIEW

1Introduction to LabVIEW

LabVIEW (short for Laboratory Virtual Instrumentation Engineering Workbench) is a
platform and development environment for a visual programming language from National
Instruments. The graphical language is named "G". Originally released for the Apple
Macintosh in 1986, LabVIEW is commonly used for data acquisition, instrument control, and
industrial automation on a variety of platforms including Microsoft Windows, various flavors
of UNIX, Linux, and Mac OS X. Visit National Instruments at www.ni.com.

The code files have the extension “.vi”, which is an abbreviation for “Virtual Instrument”.
LabVIEW offers lots of additional Add-Ons and Toolkits.

This paper is part of a series with LabVIEW papers:

e Introduction to LabVIEW

e Linear Algebrain LabVIEW

e Data Acquisition and Instrument Control in LabVIEW
e Control Design and Simulation in LabVIEW

e Signal Processing in LabVIEW

e Datalogging and Supervisory Control in LabVIEW

e System identification in LabVIEW

e Model based Control in LabVIEW

e Advanced Topics in LabVIEW

Each paper may be used independently of each other.

1.1 Dataflow programming

The programming language used in LabVIEW, also referred to as G, is a dataflow
programming language. Execution is determined by the structure of a graphical block
diagram (the LV-source code) on which the programmer connects different function-nodes
by drawing wires. These wires propagate variables and any node can execute as soon as all
its input data become available. Since this might be the case for multiple nodes
simultaneously, G is inherently capable of parallel execution. Multi-processing and multi-
threading hardware is automatically exploited by the built-in scheduler, which multiplexes
multiple OS threads over the nodes ready for execution.

2 Introduction to LabVIEW

1.2 Graphical Programming

LabVIEW ties the creation of user interfaces (called front panels) into the development cycle.
LabVIEW programs/subroutines are called virtual instruments (VIs). Each VI has three
components: a block diagram, a front panel, and a connector panel. The last is used to
represent the VI in the block diagrams of other, calling Vis. Controls and indicators on the
front panel allow an operator to input data into or extract data from a running virtual
instrument. However, the front panel can also serve as a programmatic interface. Thus a
virtual instrument can either be run as a program, with the front panel serving as a user
interface, or, when dropped as a node onto the block diagram, the front panel defines the
inputs and outputs for the given node through the connector pane. This implies each VI can
be easily tested before being embedded as a subroutine into a larger program.

The graphical approach also allows non-programmers to build programs simply by dragging
and dropping virtual representations of lab equipment with which they are already familiar.
The LabVIEW programming environment, with the included examples and the
documentation, makes it simple to create small applications. This is a benefit on one side,
but there is also a certain danger of underestimating the expertise needed for good quality
"G" programming. For complex algorithms or large-scale code, it is important that the
programmer possess an extensive knowledge of the special LabVIEW syntax and the
topology of its memory management. The most advanced LabVIEW development systems
offer the possibility of building stand-alone applications. Furthermore, it is possible to create
distributed applications, which communicate by a client/server scheme, and are therefore
easier to implement due to the inherently parallel nature of G-code.

1.3 Benefits

One benefit of LabVIEW over other development environments is the extensive support for
accessing instrumentation hardware. Drivers and abstraction layers for many different types
of instruments and buses are included or are available for inclusion. These present
themselves as graphical nodes. The abstraction layers offer standard software interfaces to
communicate with hardware devices. The provided driver interfaces save program
development time. The sales pitch of National Instruments is, therefore, that even people
with limited coding experience can write programs and deploy test solutions in a reduced
time frame when compared to more conventional or competing systems. A new hardware
driver topology (DAQmxBase), which consists mainly of G-coded components with only a
few register calls through NI Measurement Hardware DDK (Driver Development Kit)
functions, provides platform independent hardware access to numerous data acquisition

Tutorial: Linear Algebra in LabVIEW

3 Introduction to LabVIEW

and instrumentation devices. The DAQmxBase driver is available for LabVIEW on Windows,
Mac OS X and Linux platforms.

For more information about LabVIEW, visit my Blog: https://www.halvorsen.blog

1.4 LabVIEW MathScript RT Module

The LabVIEW MathScript RT Module is an add-on module to LabVIEW. With LabVIEW
MathScript RT Module you can:

e Deploy your custom .m files to NI real-time hardware

e Reuse many of your scripts created with The MathWorks, Inc. MATLAB® software and
others

e Develop your .m files with an interactive command-line interface
e Embed your scripts into your LabVIEW applications using the MathScript Node

Tutorial: Linear Algebra in LabVIEW

2 Introduction to Linear
Algebra

Given a matrix A:

aip A1m
A= i | e grm
anq Anm
Example:
_ [0 1
4=12 —3]
2.1.1 Transpose
The Transpose of matrix A:
r _[0 =2
4 _[1 -3

2.1.2 Diagonal

The Diagonal elements of matrix A is the vector
a1
diag(4) = Iaﬂ € Rp=min (xm)
App

The Diagonal matrix A is given by:

A4 0 0
PN IO R
0 0 A

Given the Identity matrix /:

5 Introduction to Linear Algebra

10 0
P (U 0| ¢ pnam
0 0 1

2.1.3 Matrix Multiplication

Given the matrices A € R™™ and B € R™*P, then

C =AB € R™P

2.1.4 Matrix Addition

Given the matrices A € R™™ and B € R™™, then

C=A+Be€ RY™

2.1.5 Determinant

Given a matrix A € R™", then the Determinant is given:

det(4) = |A]

Given a 2x2 matrix

s P L
Then

det(4) = |A| = a1a5; — ay1a47

Notice that

det(AB) = det(4) det(B)
and

det(AT) = det (4)

2.1.6 Inverse Matrices

The inverse of a quadratic matrix A € R™" is defined by:
A—l

Tutorial: Linear Algebra in LabVIEW

6 Introduction to Linear Algebra

AAT1=A"1A=1

For a 2x2 matrix we have:

A= [a11 a12] c Rp2x2

az1 Az
The inverse A™! is given by
-1 _ 1 [azz —a12] c Rp2x2
det (A)1—A21 Q11

2.2 Eigenvalues

Given A € R™™", then the Eigenvalues is defined as:

det(Al —A) =0

2.3 Solving Linear Equations

Given the linear equation

Ax =Db
with the solution:
x=A"1b
(Assuming that the inverse of A exists)
Example:
The equations
X, +2x,=5
3, +4x, =6
may be written
Ax =Db

3T
where

Tutorial: Linear Algebra in LabVIEW

7 Introduction to Linear Algebra

1=ls 4
o= [

2.4 LU factorization

LU factorization of A € R™™ s given by
A=LU

where
Lis a lower triangular matrix
U is a upper triangular matrix
Or sometimes LU factorization of A € R™™ s given by

A=LU=LDU
where

D is a diagonal matrix

2.5 The Singular Value Decomposition (SVD)

The Singular value Decomposition (SVD) of the matrix A € R™™ is given by
A=USVT

where

U is a orthogonal matrix

Vis a orthogonal matrix

S is a diagonal singular matrix

Tutorial: Linear Algebra in LabVIEW

download it from my Blog: http://home.hit.no/~hansha/

Use the Linear Algebra Palette in order to solve Linear Algebra problems with the use of

Graphical programming.

Linear Algebra

3Linear Algebra Palette in
LlabVIEW

For an Introduction to LabVIEW, see the training: “An Introduction to LabVIEW”. You may

Create Speci...

[Glewm | L]
(-1

Solve Linear Egs Dot Product
| 65 [38)

2]
Determinant
Lo
O

Inverse Matrix

A=0HOT

Hessenberg

PN
Az =2Bx|

Create Real ...

Eigenvalues a... GeneralizedE...

e

Quter Product AxB
] e [len
&1 rank

Matrix Norm Matri

|65 [0}

ueuB=l

Sylvester Eqs

Matrix Balance Back Transfor...

| €5 [0}

ARB

Kronecker Prod
[€3 [0}

[+]ga;

Trace

Matrix Exp

Generalized SVD

|65 [0}
T

Lyapunov Eqs
(] e

|1-Al

Matrix Chara...

]

i

Test Matrix T...

Llew
Eﬂ"
Matrix Power

Matrix

cond

Condition MNu...
Llew

In[t:)
Matrix Log

In the Matrix Sub Palette we have the following functions:

Linear Algebra Palette in LabVIEW

Q, Search | & view~
(=) g2% 28| [2] 2| [omo]
Zi . [
Matrix Size Build Matrix Resize Matrix Transpose M...
a8 g8 [a=g)
23 [d] 2 e =
Get Matrix Di... Get Matrix El... Get Submatrix
e B [
) &’ &
Set Matrix Di... Set Matrix Ele... Set Submatrix

LabVIEW uses arrays to represents vectors and matrices. A vector is represented as a one
dimensional array, while a matrix is represented as a two dimensional array.

In the Array, Matrix & Cluster Palette available from the Front Panel, we have the basic array

and matrix controls:

%]

Array, Matrix & Cluster

o \liew ¥

[[1zZ] = o
H =

A o =
Array Cluster

B
B
B

||

RealMatrix.ctl ComplexMatri...
> 7 L

[2t] =t

Error In 3D.ctl Error Qut 3D.ctl

3.1 Vectors

Given a vector x
X1
X = lle € R"
xn

Tutorial: Linear Algebra in LabVIEW

10 Linear Algebra Palette in LabVIEW

Example: Vectors

3.2 Matrices

Given a matrix A:

ai1 A1m
A= : € R™™M
anl anm
Example: Matrices
[0 1
4=12 —3]
Front Panel:
0 o 1 0 L
o 12 30
0 0 0 o
< >
3.2.1 Transpose
The Transpose of matrix A:
a1 an1
AT = : € Rmxn
A1m Anm

Example: Transpose

Tutorial: Linear Algebra in LabVIEW

11 Linear Algebra Palette in LabVIEW

T J—
AT=[—02 —13] =[(1) —é

Front Panel:

o Jo 1t jo 1= o o I
0 2 3 0 g 1 3 Iu
0 0 o =] 0 o o @
< > < >

Block Diagram:

ﬂﬂ Transpose Matrix.vi| Matrix Transposel
[pBL

[‘ ¥0BL]

et

3.2.2 Diagonal

The Diagonal elements of matrix A is the vector
a1
diag(4) = Iaﬂ € Rp=min (xm)
App

Example: Diagonal

Front Panel:

0 o 1 0 £ 0 10 0 0]
o 2 3 0 o 12 0 0
0 0 0 @ 0 0 0 =
< > <3 >

Block Diagram:

) Get Matrix Diagonal
(L T Hizgonal]

= [LD

The Diagonal matrix A is given by:

Tutorial: Linear Algebra in LabVIEW

12 Linear Algebra Palette in LabVIEW

A4 0 0
a=|% %2 Oe g
0 0 An
Given the Identity matrix /:
1 0 0
[= 0 1 0 e pxm
0 0 1

Front Panel:

Special Matrix

lo |1 0 0 -
0 1 0
0 0 1
<

f
T
o

>

Block Diagram:

e Create Special Matrix.¥i| Epecial Matrix
O Identity Y[l om Favaracacacacacaascaes

5= ¥DBL]
L owa

|Rea| 'I

3.2.3 Matrix Multiplication

Given the matrices A € R™™ and B € R™*P, then

C =AB € R™P
where
n
Cik = z ajiby,
=1

Front Panel:

Tutorial: Linear Algebra in LabVIEW

Linear Algebra Palette in LabVIEW

13
0 o 1 0 a 0 11 0 0 | i E 2 |0 a
rpl A R r E 2 |0 i SR
1] 0 0 2 0 0 0 v 0 0 0 v
< > < >] >
Block Diagram:
A axBvi| JAxB
[pBL |65 [0 »oEBL]
B Zeacacac [g:][“l
[nm_ﬂ &
Note!
AB # BA
A(BC) = (AB)C
(A+B)C = AC + BC
C(A+B)=CA+CB
- Prove this in LabVIEW
3.2.4 Matrix Addition
Given the matrices A € R™™ and B € R™™, then
C=A4+B € RWm
Example: Matrix Addition
Front Panel:
o0 o 1 0 a 0 1 0 0] 0 1 1 0]
0 2 3 0 0 3 -2 0 0 1 S 0
0 0 0 v 0 0 1] i~ 0 0 0 v
<] <] <]

Block Diagram:

Tutorial: Linear Algebra in LabVIEW

14 Linear Algebra Palette in LabVIEW

Note! There is no special function for matrix addition, just use the standard add function in
the Numeric palette.

3.2.5 Determinant

Given a matrix A € R™™", then the Determinant is given:

det(4) = |A|

Given a 2x2 matrix

ay;; Qg
a=| | e r?
az1 Ay

Then

det(4) = |A| = aj1a,; — az1a4,

Example: Determinant

Front Panel:

0 10 1 0 -~
= = 1 2,00E+0
I] D D 5}
< >

Block Diagram:

Al Determinant. vi eterminant
[pBL [Elisl :-i-:
[

Notice that

Tutorial: Linear Algebra in LabVIEW

15 Linear Algebra Palette in LabVIEW

det(AB) = det(4) det(B)
and
det(AT) = det (4)

- Prove this in LabVIEW

3.2.6 Inverse Matrices

The inverse of a quadratic matrix A € R™" is defined by:

A—l

AAT1=A"1A=1

For a 2x2 matrix we have:

ayj; Ago
a=| | e r?
az1 Ay

The inverse A™! is given by

1 1 azz a12] € Rp22

~ det (Al=az1 an

Example: Inverse

Front Panel:

0 0 1 0 £ 0 11,5 0,5 0 £y
-2 -3 0 1 0 0

0 0
0 0 0 & 0 0 0 v
<3) <]

Block Diagram:

) Inverse Matrix.vi| nverse Matrix
[DBL P seaeaes{ [l #051]

N

Notice that:

AAT1=A"1A=1

Tutorial: Linear Algebra in LabVIEW

16 Linear Algebra Palette in LabVIEW

- Prove this in LabVIEW

3.3 Eigenvalues

Given A € R™™, then the Eigenvalues is defined as:

det(AI —A) =0
Example: Eigenvalues
Front Panel:
0 0 1 0 E5] W
o 2 -3 0
0 0 0 . et
< 7]

Block Diagram:

El—a |Eigenvalues and Vectors.vil ,

[oBLM [¥CDB]
Ax=ax

3.4 Solving Linear Equations

Given the linear equation

Ax =D
with the solution:
x=A"1h

(Assuming that the inverse of A exists)
Example: Solving Linear Equations
The equations

X, +2x,=5

3x; +4x, =6

Tutorial: Linear Algebra in LabVIEW

17 Linear Algebra Palette in LabVIEW

may be written

Ax=0b

kI -E

where
1 2
A= [
3 4
]
X = X,
b=
6
The solution is:
Front Panel:
0 1 2 1] Ay 0 5 = 0 -4 0 0 -
0 3 4 0 0) a 4,5 0 0
0 0 0 - 0 = 0 0 0 =
< 2 €| 3 <]

Block Diagram:

A IInverse Matrix.vi] 4 x B.vil Folution Matrix|
[DBLMacacac [€5 [28] €5 [0

= ¥DBL]
[:] G g
[DB[B:::::::E

Or:

ﬂ! |§ol'~ze Linear Equations.vi] Bolution Matrix
[oBL - i »oBL)

3.5 LU factorization

LU factorization of A € R™™ is given by
A=LU
where

Tutorial: Linear Algebra in LabVIEW

18 Linear Algebra Palette in LabVIEW

Lis a lower triangular matrix
U is a upper triangular matrix

Example: LU Factorization

Front Panel:

0 1 2 0] 0 1 0 0] [E] 4 0]
0 3 4 0 0,3333 1 0 0 1] 0,6666 0
1] 1] 1] v 1] o 0 > 0 1] 1] >
& > @ > <]
Block Diagram:
i LU Factorization.vil ‘
|65 [0] ¥oBL]
[DBL Y ..o dA=L0
[][=) I
{§DBL]
Or sometimes LU factorization of A € R™™ is given by
A=LU=LDU
where
D is a diagonal matrix
Example: LU Factorization
Front Panel:
0 11 2 0 - 0 11 0 0 @ 0 13 4 0 @ 0 i
g 4 0 o 10,3333t o o e 0,6666 0
o 0 o |« o o o |w o o o |« 0
] >] > <l >

Block Diagram:

n LU Factorization. vi FI
[DBLM. .4

[T] ‘m’l]l

A=LU

[=][) I
»oBL]

Tutorial: Linear Algebra in LabVIEW

19 Linear Algebra Palette in LabVIEW

3.6 The Singular Value Decomposition (SVD)

The Singular value Decomposition (SVD) of the matrix A € R™™ s given by

A=USVT
where
U is a orthogonal matrix
Vis a orthogonal matrix
S is a diagonal singular matrix
Example: SVD Decomposition
Front Panel:
0 1 2 0 -] -0,40450,91451 0 __ 0 5,4649 0 0 - 0 -0,5760 -0,58174 0 -
0 3 4 0 -0,9145/-0,4045 0 0 0 0,3659 0 -0,8174 /0,57604 0
0 1] 0 v 1] 1] 0 v 0 0 0 v 0 1] 0 v
< > <] < 2] <]

Block Diagram:

Tutorial: Linear Algebra in LabVIEW

4LabVIEW MathScript RT
Module

You can work with LabVIEW MathScript through either of two interfaces: the “LabVIEW
MathScript Interactive Window” or the “MathScript Node”.

You can work with LabVIEW MathScript RT Module through both interactive and
programmatic interfaces. For an interactive interface in which you can load, save, design,
and execute your .m file scripts, you can work with the “MathScript Interactive Window”. To
deploy your .m file scripts as part of a LabVIEW application and combine graphical and
textual programming, you can work with the “MathScript Node”.

The LabVIEW MathScript RT Module complements traditional LabVIEW graphical
programming for such tasks as algorithm development, signal processing, and analysis. The
LabVIEW MathScript RT Module speeds up these and other tasks by giving users a single
environment in which they can choose the most effective syntax, whether textual, graphical,
or a combination of the two. In addition, you can exploit the best of LabVIEW and thousands
of publicly available .m file scripts from the web, textbooks, or your own existing m-script
applications. LabVIEW MathScript RT Module is able to process your files created using the
current MathScript syntax and, for backwards compatibility, files created using legacy
MathScript syntaxes. LabVIEW MathScript RT Module can also process certain of your files
utilizing other text-based syntaxes, such as files you created using MATLAB software.
Because the MathScript RT engine is used to process scripts contained in a MathScript
Windows or MathScript Node, and because the MathScript RT engine does not support all
syntaxes, not all existing text-based scripts are supported.

LabVIEW MathScript RT Module supports most of the functionality available in MATLAB, the
syntax is also similar.

For more details, see http://zone.ni.com/devzone/cda/tut/p/id/3257

20

5LabVIEW MathScript

Requires: MathScript RT Module

The “LabVIEW MathScript Window” is an interactive interface in which you can enter .m file
script commands and see immediate results, variables and commands history. The window
includes a command-line interface where you can enter commands one-by-one for quick
calculations, script debugging or learning. Alternatively, you can enter and execute groups of
commands through a script editor window.

As you work, a variable display updates to show the graphical / textual results and a history
window tracks your commands. The history view facilitates algorithm development by
allowing you to use the clipboard to reuse your previously executed commands.

You can use the “LabVIEW MathScript Window” to enter commands one at time. You also
can enter batch scripts in a simple text editor window, loaded from a text file, or imported
from a separate text editor. The “LabVIEW MathScript Window” provides immediate
feedback in a variety of forms, such as graphs and text.

T Lab Vil st Maniicriph FHEL %
e IR Yoo (peds Dak rdow
Fot delp, entet "Dalp classes N , W .4 Claremeve »
Textual
Output
. Variables /
MathScript Script /
H Command
Window History
Command i
Window r—'» - v

21

22

LabVIEW MathScript

P LabVIEW MathScript

- o]

File Edit Yiew Operate Tools Window Help

C:\tempiLabYIEW Datalsimple.m]

o]

Output Window | variables | Seript | History |
ans = A~
—_— e E{'
function [r] = simple(a)
- r = sin{a)
A=
1 2
3 4
>>inwv(4)
ans =
= 1
a5 -0.5
>>det (i)
ans =
= 3
e
Command Window
ia]
™
a0 de) Line: 3, Column: 11

5.1 Help

You may also type help in your command window

>>help

Or more specific, e.g.,

>>help plot

5.2 Examples

| advise you to test all the examples in this text in LabVIEW MathScript in order to get

familiar with the program and its syntax. All examples in the text are outlined in a frame like

this:

>>

Tutorial: Linear Algebra in LabVIEW

23 LabVIEW MathScript

This is commands you should write in the Command Window.

You type all your commands in the Command Window. | will use the symbol “>>” to
illustrate that the commands should be written in the Command Window.
Example: Matrices

Defining the following matrix

The syntax is as follows:

> A = [1 2;0 3]
Or
> A = [1,2;0,3]

If you, for an example, want to find the answer to

a+ b,wherea=4,b=3

>>a=4
>>b=3
>>a+b

MathScript then responds:

ans =
7

MathScript provides a simple way to define simple arrays using the syntax:
“init:increment:terminator”. For instance:

>> array = 1:2:9
array =
13579

defines a variable named array (or assigns a new value to an existing variable with the name
array) which is an array consisting of the values 1, 3, 5, 7, and 9. That is, the array starts at 1
(the init value), increments with each step from the previous value by 2 (the increment
value), and stops once it reaches (or to avoid exceeding) 9 (the terminator value).

The increment value can actually be left out of this syntax (along with one of the colons), to
use a default value of 1.

>> ari = 1:5
ari =

Tutorial: Linear Algebra in LabVIEW

24 LabVIEW MathScript

12345

assigns to the variable named ari an array with the values 1, 2, 3, 4, and 5, since the default
value of 1 is used as the incrementer.

Note that the indexing is one-based, which is the usual convention for matrices in
mathematics. This is atypical for programming languages, whose arrays more often start
with zero.

Matrices can be defined by separating the elements of a row with blank space or comma and
using a semicolon to terminate each row. The list of elements should be surrounded by
square brackets: []. Parentheses: () are used to access elements and subarrays (they are also
used to denote a function argument list).

>> A = [16 3 2 13; 5 10 11 8; 9 6 7 12; 4 15 14 1]

A =
16 3 2 13
510 11 8
9 o6 7 12
4 15 14 1
>> A(2,3)
ans =
11

Sets of indices can be specified by expressions such as "2:4", which evaluates to [2, 3, 4]. For
example, a submatrix taken from rows 2 through 4 and columns 3 through 4 can be written
as:

A square identity matrix of size n can be generated using the function eye, and matrices of
any size with zeros or ones can be generated with the functions zeros and ones, respectively.

>> eye (3)
ans =

1 00

010

001
>> zeros (2, 3)
ans =

000

000
>> ones (2, 3)
ans =

111

Tutorial: Linear Algebra in LabVIEW

25 LabVIEW MathScript

5.3 Useful commands

Here are some useful commands:

Command Description
eye (x), eye(x,y) Identity matrix of order x
ones (x), ones(x,Yy) A matrix with only ones
zeros (x), zeros(x,V) A matrix with only zeros
diag([x y z]) Diagonal matrix
size (A) Dimension of matrix A
A’ Inverse of matrix A

5.4 Flow Control

This chapter explains the basic concepts of flow control in MathScript.
The topics are as follows:

o If-else statement

e Switch and case statement
e Forloop

e While loop

5.4.1 If-else Statement

The if statement evaluates a logical expression and executes a group of statements when the
expression is true. The optional elseif and else keywords provide for the execution of
alternate groups of statements. An end keyword, which matches the if, terminates the last
group of statements. The groups of statements are delineated by the four keywords—no
braces or brackets are involved.

Example: If-Else Statement

Test the following code:

Tutorial: Linear Algebra in LabVIEW

26 LabVIEW MathScript

n=>5
if n > 2

M = eye(n)
elseif n < 2

M = zeros (n)
else

M = ones (n)
end

5.4.2 Switch and Case Statement

The switch statement executes groups of statements based on the value of a variable or
expression. The keywords case and otherwise delineate the groups. Only the first matching
case is executed. There must always be an end to match the switch.

Example: Switch and Case Statement

Test the following code:

n=2
switch (n)
case 1
M = eye(n)
case 2
M = zeros (n)
case 3
M = ones (n)
end

5.4.3 For loop

The for loop repeats a group of statements a fixed, predetermined number of times. A
matching end delineates the statements.

Example: For Loop

Test the following code:

m=5
for n = 1:m
r (n) = rank(magic(n));
end
r

5.4.4 While loop

The while loop repeats a group of statements an indefinite number of times under control of
a logical condition. A matching end delineates the statements.

Tutorial: Linear Algebra in LabVIEW

27 LabVIEW MathScript

Example: While Loop

Test the following code:

m=>5;

while m > 1
m=m - 1;
zeros (m)

end

Tutorial: Linear Algebra in LabVIEW

28 LabVIEW MathScript

5.5 Plotting

This chapter explains the basic concepts of creating plots in MathScript.
Topics:

e Basic Plot commands

Example: Plotting

Function plot can be used to produce a graph from two vectors x and y. The code:

x = 0:p1/100:2*pi;
y = sin(x);
plot (x,V)

produces the following figure of the sine function:

08

0.6

02

-02

0.6

08

Example: Plotting

Three-dimensional graphics can be produced using the functions surf, plot3 or mesh.

[X,Y] = meshgrid(-10:0.25:10,-10:0.25:10) ;
f = sinc(sqrt ((X/pi)."2+(Y/pi)."2));
mesh (X, Y, f);

axis ([-10 10 -10 10 -0.3 17)
xlabel (' {\bfx}")

ylabel ('{\bfy}")

zlabel (' {\bfsinc} ({\bfR})"')

Tutorial: Linear Algebra in LabVIEW

29 LabVIEW MathScript

hidden off

This code produces the following 3D plot:

Tutorial: Linear Algebra in LabVIEW

30 Linear Algebra Examples using MathScript

6Linear Algebra Examples
using MathScript

Requires: MathScript RT Module

Linear algebra is a branch of mathematics concerned with the study of matrices, vectors,
vector spaces (also called linear spaces), linear maps (also called linear transformations), and
systems of linear equations.

MathScript are well suited for Linear Algebra.

6.1 Vectors

Given a vector x
x=|.| €R"

Example: Vectors

Given the following vector

The Transpose of vector x:

xT — [xl X5 xn] € Rlxn

>> x!
ans =
1 2 3

The Length of vector x:

Tutorial: Linear Algebra in LabVIEW

31 Linear Algebra Examples using MathScript

x|l = VxTx = \/xf + x5+ -+ x2

Orthogonality:
xTy =0
6.2 Matrices
Given a matrix A:
aip A1m
A= i | e grem
ani Anm
Example: Matrices
Given the following matrix:
10 1
4=1 —3]
>> A=[0 1;-2 -3]
A =
0 1
-2 -3
6.2.1 Transpose
The Transpose of matrix A:
aip an1
AT — : € Rmxn
A1m Anm

Example: Transpose

Tutorial: Linear Algebra in LabVIEW

32 Linear Algebra Examples using MathScript

6.2.2 Diagonal

The Diagonal elements of matrix A is the vector

a1
a ,
diag(A) = 22 € Rp=min (xm)
App
Example: Diagonal
Find the diagonal elements of matrix A:
>> diag (A)
ans =
0
-3
The Diagonal matrix A is given by:
A 0 -« 0
A= O 1.2 O € Rnxn
0 O Ay
Given the Identity matrix /:
1 0 0
[= 0 1 0 c prxm
0 0 1

Get the 3x3 Identity matrix:

>> eye (3)

ans =
1 0 0
0 1 0
0 0 1

6.2.3 Triangular

Lower Triangular matrix L:

13

Tutorial: Linear Algebra in LabVIEW

33 Linear Algebra Examples using MathScript

Upper Triangular matrix U:
Uzla]
0o 0 .
6.2.4 Matrix Multiplication

Given the matrices A € R™™ and B € R™*P, then

C =AB € R™P
where
n
Cik = Z ajibik
=1
Example: Matrix Multiplication
Matrix multiplication:
>> A=[0 1;-2 -3]
A =
0 1
-2 -3
>> B=[1 0;3 -2]
B =
1 0
3 -2
>> A*B
ans =
3 -2
-11 6
Note!
AB # BA

A(BC) = (AB)C
(A+B)C =AC+BC

C(A+B)=CA+CB

6.2.5 Matrix Addition

Given the matrices A € R™™ and B € R™™, then

C=A+Be€ RY™

Tutorial: Linear Algebra in LabVIEW

34 Linear Algebra Examples using MathScript

Example: Matrix Addition

Matrix addition:

>> A=[0 1;-2 -3]
>> B=[1 0;3 -2]

>> A+B

ans =
1 1
1 =5

6.2.6 Determinant

Given a matrix A € R™", then the Determinant is given:

det(4) = |A]
Given a 2x2 matrix
_ Q11 Q12 %2
A= [a21 azz] € R

Then

det(4) = |A| = ay1a,; — az1a4,

Example: Determinant

A =
0 1
-2 -3
>> det (A)
ans =
2
Notice that
det(AB) = det(4) det(B)
and

det(AT) = det (4)

Tutorial: Linear Algebra in LabVIEW

35 Linear Algebra Examples using MathScript

Example: Determinant

Determinants:

>> det (A*B)
ans =

-4
>> det (A) *det (B)
ans =

-4
>> det (A'")
ans =

2
>> det (A)
ans =

2

6.2.7 Inverse Matrices

The inverse of a quadratic matrix A € R™" is defined by:

A—l

AAT1=A"1A=1

For a 2x2 matrix we have:

a1 Q2 %2
A= € R
az1 Ay

The inverse A1 is given by

-1 1 [Qzz —0Ag2

— 2x2
~ det (A) Jer

—Qz1 Qg4

Example: Inverse Matrices

Inverse matrix:

A =
0 1
=2 -3
>> inv (A)
ans =
-1.5000 -0.5000
1.0000 0
Notice that:

Tutorial: Linear Algebra in LabVIEW

36 Linear Algebra Examples using MathScript

AAT1=A"1A=1

- Prove this in MathScript

6.3 Eigenvalues

Given A € R™™", then the Eigenvalues is defined as:
det(Al —A) =0

Example: Eigenvalues

A =

0 1

-2 =3
>> eig(A)
ans =

-1

-2

6.4 Solving Linear Equations

Given the linear equation

Ax =D
with the solution:
x=A"1b
(Assuming that the inverse of A exists)
Example: Solving Linear Equations
Solving the following equation:
The equations
x;+2x,=5
3x, +4x, =6
may be written
Ax =D

Tutorial: Linear Algebra in LabVIEW

37 Linear Algebra Examples using MathScript

;-G

where
=3 3
=[]
b=[>

The solution is:

A:
1 2
3 4
>> b=[5;06]
b =
5
6
>> x=inv (A) *b
x =
-4.0000
4.5000

In MathScript you could also write “x=A\b”, which should give the same answer. This syntax
can also be used when the inverse of A don’t exists.

Example: Solving Linear Equations

Illegal operation:

>> A=[1 2;3 4;7 8]
>> x=inv (A) *b

??? Error using ==> inv
Matrix must be square.
>> x=A\b
x =

-3.5000

4.1786

6.5 LU factorization

LU factorization of A € R™™ is given by

where

Tutorial: Linear Algebra in LabVIEW

38 Linear Algebra Examples using MathScript

L is a lower triangular matrix
U is a upper triangular matrix
The MathScript syntaxis [L,U]=1u (A)

Example: LU Factorization

Find L and U:

>> A=[1 2;3 4]

>> [L,U]=1u(A)

L =
0.3333 1.0000
1.0000 0

3.0000 4.0000
0 0.6667

Or sometimes LU factorization of A € R™™ s given by
A=LU=LDU

where

D is a diagonal matrix

The MathScript syntaxis [L, U, P]=1u (A7)

Example: LU Factorization

Find L, U and P:

>> A=[1 2;3 4]

A =
1 2
3 4
>> [L,U,P]=1u(A)
L =
1.0000 0
0.3333 1.0000
U =
3.0000 4.0000
0 0.6667
P =
0 1
1 0

6.6 The Singular Value Decomposition (SVD)

Tutorial: Linear Algebra in LabVIEW

39 Linear Algebra Examples using MathScript

The Singular value Decomposition (SVD) of the matrix A € R™™ is given by

A=USVT
where
U is a orthogonal matrix
Vis a orthogonal matrix
S is a diagonal singular matrix
Example: SVD Decomposition
Find S, Vand D:
>> A=[1 2;3 4];
>> [U,S,V] = svd(A)
U =
-0.4046 -0.9145
-0.9145 0.4046
S =
5.4650 0
0 0.3660
VvV =
-0.5760 0.8174
-0.8174 -0.5760
6.7 Commands
Command Description
[L,U]=1u(A) LU Factorization
[L,U,P]=1u(A)
[(U,S,V] = svd(A) Singular Value Decomposition (SVD)

Tutorial: Linear Algebra in LabVIEW

7MathScript Node

The “MathScript Node” offers an intuitive means of combining graphical and textual code
within LabVIEW. The figure below shows the “MathScript Node” on the block diagram,
represented by the blue rectangle. Using “MathScript Nodes”, you can enter .m file script
text directly or import it from a text file.

(5 ir_fittor v Block Disgrom oS
B ot yow Bromet Cpere Took Wedow teb .
(& on ol volepl 2 [13 Avphcation Fore -”:D-Ha-l:tb-ﬂﬁ (2]
~
Fkoplon
| J'_' i l fpts = [0 fstoplow fpassiow];
" Usssonfow amplitude = [00 1.0 1.0);
i I,,. pio © b=fir2(taps, fpts, amplitude); Fi ¥ Gragh
Fb- e p:l.F}-goq'z(b(. [;]0-’:;)2)5 'l " J
=] sH = 20" log (abs(H)); L&
ol TeES
[fir2 designs a linegr-phase FIR filter using frequency sampling|
< >

MathScript
Node

You can define named inputs and outputs on the MathScript Node border to specify the data
to transfer between the graphical LabVIEW environment and the textual MathScript code.

You can associate .m file script variables with LabVIEW graphical programming, by wiring
Node inputs and outputs. Then you can transfer data between .m file scripts with your
graphical LabVIEW programming. The textual .m file scripts can now access features from
traditional LabVIEW graphical programming.

The MathScript Node is available from LabVIEW from the Functions Palette: Mathematics >
Scripts & Formulas

40

41 MathScript Node

Scripts & Formulas

Formula Node Script Nodes

abe g
()

Formula Formula Parsing
4 » : 4
8] e ' e
1D & 2D Eval... Calculus Zeros

If you click Ctrl+H you get help about the MathScript Node:

Context Help
MathScript Node A
input wariable 1 Sumd = eyel(size(A));
(optional) 2 fori= 1in
input variable 2@ SumA = Sumd + A”~iffactorial(]); output variable
(optional) 4 end (optional)
5 Delta = Suméa - expmi(A);
enor in oo cc 2ITOF out
Executes LabVIEW MathScripts and your other text-based scripts using the
MathScript RT Module engine. You can use the MathScript Mode to evaluate
scripts that you create in the LabVIEW MathScript Window,
If a MathScript Node contains a warning alyph, LabYIEW operates with slower
run-time performance for the node. You can modify vour script to remove the
warning glyph from the MathScript Node and improve run-time performance.
Detailed help v
=[8[2]< 3 .

Click “Detailed help” in order to get more information about the MathScript Node.

Use the NI Example Finder in order to find examples:

Tutorial: Linear Algebra in LabVIEW

42 MathScript Node

* NI Example Finder

Browse | Search | Submit Double-click an example to open it. Information
[input A Lo
Browse according to: Cyinstr 0
) Task [Jinternet
] Ivdsc
@) Directory Structure] Ivoop
) math
. 0ath Plo
m —
() LabVIEW Zone| | =T -
CONNECT TO YOUR COMMUNITY T MaERSeript - Heat Equation
Heat Equation.vi H
< lc::gr"ﬂ ()| Aicles 3 MathScript - Parallel Fractal
Parallel Fractal (split).vi >
% g::;ssinn 03 Resources Parallel Fractal (typical).vi -]
Update Fractal.vi
& | Code) User - i ibrari
), Sharing :& B {3 MathScript Shared Libraries 2
MathScript - Calling a Windows DLL.vi IE} -
) N g:zr MathScript - Using shared libraries.vi 2> Requirements
MathScript Shared Libraries.lvproj)
Visit LabVIEW Zone {3 MathScript using Riemann Zeta
MathScript using Riemann Zeta.vi IE}
MathScript Fractal.vi H
[include ni.com examples MathScript Fundamentals, vi [
L. ni.com query timeout ZJmax
) measure
Hardware) Modulation
[Find hardware v ‘ 1 motion e
[Limit results to hardware Add to Favorites ‘ [Setup...] [Help] [Close]

7.1 Transferring MathScript Nodes between
Computers

If a script in a MathScript Node calls a user-defined function, LabVIEW uses the default
search path list to link the function call to the specified .m file. After you configure the
default search path list and save the VI that contains the MathScript Node, you do not need
to reconfigure the MathScript search path list when you open the VI on a different computer
because LabVIEW looks for the .m file in the directory where the .m file was located when
you last saved the VI. However, you must maintain the same relative path between the VI
and the .m file.

7.2 Examples

Example: Using the MathScript Node

Here is an example of how you use the MathScript Node. On the left border you connect
input variables to the script, on the right border you have output variables. Right-click on the
border and select “Add Input” or “Add Output”.

Tutorial: Linear Algebra in LabVIEW

43

MathScript Node

[The MathScript Node can be found in the Functions > =Mathematics > >Scripts & Formulas Palette. |

MathScript Mode

Index Array|

% Comments are preceded by %
Yox=[123];

% Square each element of x to get s
¥ =X

1
2
3
4
5
6

%o Extract (1)

HH 1) in LabVIEW
¥ = X2
»OBL]

f(1) in MathScript Node|

—_—
M= O WO

yl=y(1);

% Calculate the Dot Product of x an
d = doti{x,v);

Error out

POBL

Dot Product
»OBL]

1. To add an input {output)
to the MathScript node,
right-click on the node and
select Add Input (Add
Output),

2. Scripts can be typed in
the MathScript node, or
imported by right-clicking on
the node and selecting
Irnport.

3. To change the datatype
of an output, right-click on
the output and select
Choose Data Type.

4, Use the Index Array VIto
extract the "first" element
of v. Outside of the
MathScript node, LabVIEW
arrays are zero-indexed.

Example: Calling a Windows DLL:

Build the path to the header file. lLoad the Windows DLL. Calculate the cursor position and call the Windows DLL. Unload the Windows DLL.
[If this example is built into an b,
lapplication, it will look for the file Bteps]
lin the application's data directory. [132¢ N
by 1 theta = 2*pi*i | N;
Path to Windows DLL 2 x=Cx+r*cos(theta);
N & y = Cy +r * sin(theta);
4 lib_callin, 'SetCursorfos, x, v);
1 if(~lb_isloaded(n)) — 1 lib_unload(n);
u 2 lib_load(ibrary, header, ‘slias’, n); n
S App 5 [[Defadt ¥ library] 3 end
t n <
App.Kind
S ey iﬂ‘k header —)
o
[E13H 7

ircle Radius
(pixels;

(DBLK

Use the LabVIEW MathScript to create a m-file script (or you may use MATLAB to create the
same script):

Tutorial: Linear Algebra in LabVIEW

44

MathScript Node

B LabVIEW MathScript Q@
File Edit Yiew Operate Tools Window Help
Output Window variables | Seript | History |
For help, enter 'help classes' -~ _ _
poy @ ‘ c:\TempiLabVIEW Dataicalcx.m ‘
Unknown symbol on line 1: A& a=[12;34]; R
b=[5;6]; |
>>A:[1 2:3 4] x=inv{A)*b
b=[5:6];
x=inv(4)*b
Unknown symbol on line 1: A&
>>
X =
-4
4.5
™~
Command Window
~
v ™~
o Ide Line: 4, Column: 1

Right-click on the border of the MathScript Node and select “Import”, and then select the m-

file you want to import into the Node.

Visible Items
Help
Examples
Description gnd Tip...

StructuresPalette 4

Clear Script
Clear Script Breakpoints

Properties

Tutorial: Linear Algebra in LabVIEW

45 MathScript Node

Right-click on the right border and select “Add Output”. Then right-click on the output
variable and select “Create Indicator”.

Block Diagram:

A=[12;34];
b=[5;6];

x=inv{A)*b
¥0BL]

The result is as follows (click the Run button):

Al

ol o
1
-+

If you, e.g., add the following command in the MathScript Node: plot(x), the following window
appears:

B’ Plot 1 H=1E3
File Items Tools Help

Graph

5_

4_

3-

2_

1_

U-

-1_

-2_

-3-

4= 1 1 1 1 1 1 1 1 1 1

1 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9

Tutorial: Linear Algebra in LabVIEW

46 MathScript Node

7.3 Exercises

Use the MathScript Node and test the same examples you did in the previous chapter
(Chapter 6 - “Linear Algebra Examples using MathScript”)

Tutorial: Linear Algebra in LabVIEW

8Whats Next?

8.1 My Blog

For more information about LabVIEW, visit my Blog: https://www.halvorsen.blog

8.2 Training

This Training is a part of a series with other Training Kits | have made, such as:

e Introduction to LabVIEW

e Data Acquisition in LabVIEW

e Control and Simulation in LabVIEW

e LabVIEW MathScript

e Linear Algebrain LabVIEW

e Datalogging and Supervisory Control in LabVIEW
e Wireless Data Acquisition in LabVIEW

e Intermediate Topics in LabVIEW

e Advanced Topics in LabVIEW

These Training Kits are available for download from my blog: https://www.halvorsen.blog

8.3 MathScript Functions

In the Help system there is detailed information about all the MathScript functions available.
In addition to the MathScript RT Module functions, different add-on modules and toolkits
installs additional functions. The LabVIEW Control Design and Simulation Module and
LabVIEW Digital Filter Design Toolkit installs a lot of additional functions.

47

48

MathScript Node

€4 B o«

Skijul Sok Tilbake

Innhold | Stikkordregister | Sek | F ¢ *

LabVIEW Help

Finding Example ¥ls

Glossary

LabVIEW 2009 Features and Changes
4ctivating Your Software

Using Help

LabVIEW Documentation Resources
Getting Started with LabVIEW
Fundamentals

VI and Function Reference

Property and Method Reference
Taking Measurements

Controlling Instruments

Control Design and Simulation Module

CMathS RT Module Functions)

Real-Time Module

Statechart Module

LabVIEW Modules and Toolkits

NI Device Drivers

Important Information

Technical Support and Professional Servic

Ead
v

Alternativer

MathScript RT Module Functions
Requires: MathScript RT Module

Use the LabVIEW MathScript functions to perform mathematical or signal processing calculations and anal
text-based language. You can use LabVIEW MathScript to write functions and scripts for use in the LabVIE\
Window or MathScript Node. The following is a list of all classes of functions and commands that LabVIEW MathScript

supports.

(LabVIEW 64-bit) LabVIEW MathScript is not supported in LabVIEW (54-bit).

C Caution (Real-Time Module) National Instruments does not guarantee and is not responsible for the jitter
characteristics of the MathScript RT Module functions. Depending on the functions and data types you use,
memory allocations might be required at run time, which can cause jitter in the real-time application. To
ensure that the application meets timing requireme
benchmark (and you are solely responsible for testing) the jitter in your application before you deploy the

application to the field.

The LabVIEW Centrel Design and Simulation Medule installs additional MathScript RT Module functions.

The LabVIEW Digital Filter Design Toolkit installs additional MathScript RT Module functions.

s, National Instruments recommends that you

is using a
MathScript

Class

Description

advanced

Advanced mathematical functions

pproximation

Approximation and interpolation

audio Sound functions

basic Basic mathematical functions
bitwise Bit-oriented functions
boolean Boolean functions
commands Commands

comparison Relational operators
constants Constants

dag Data acquisition

dsp Digital signal processing
filter design Filter design

filter implementation Filter implementation
geometry Combinatorial geometry
ignored Ignored functions

integration Integration

libraries Loading, unleading, and calling shared libraries
linalgebra Linear algebra

linear systems

Linear systems

matrix Special matrices
matrixops Matrix operators
membership Membership

modeling and prediction

Modeling and prediction

[

Tutorial: Linear Algebra in LabVIEW

Quick Reference

LabVIEW

Keyboard Shortcuts

Objects and Movement

e 5 Selects multiple objects; adds object to
Shift-click current selection.
14 - (arrow keys) thlﬁ;:w selected objects one pixel at a
. Moves selected objects several pixels
Shift-1 >« at a time.
Shift-click (drag) Moves selected objects in one axis.
Ctrl-click (drag) Duplicates selected objects.
Cul-Shift-click (drag) 1 -P/<a(es selsted ojects and moves
o Resizes object while maintaining
Shift-resize aspect ratio.
2 Resizes object while maintaining
Ctrl-resize conterioint:
Resizes selected object while
Ctrl-Shift-resize maintaining center point and aspect
ratio.
Ctrl-drag a rectangle Adds more working space to the front
in open space panel or block diagram.

N Selects all front panel or block diagram
Cul-A items. -
Ctrl-Shift-A m last alignment operation on
Curl-D m last distribution operation on

. Adds a free label to the front panel or

Double-click open space block diagram if automatic tool
selection is enabled.
Scrolls through subdiagrams of a Case,

Ctrl-mouse wheel Event, or Stacked Sequence structure.
Disables t alignment positions

Spacebar (drag) when nmlprrmabe or camﬂloof\s.

Cerl-U Reroutes all wires and rearranges
block diagram objects automatically.

Debugging

Ctrl-4 Steps into node.

Ctrl-— Steps over node.

Ctrl-d Steps out of node.

Basic Editing

Ctrl-Z Undoes last action.

Ctrl-Shift-Z Redoes last action.

Ctrl-X Cuts selected objects.

Ctl-C Copies selected objects

Ctrl-v Pastes last cut or copied objects.

Navigating the LabVIEW Environment

Curl-E Displays block diagram or front panel windows.
Curl-# Enables or disables grid alignment.

[Mac 0S) Press the Command-* keys.
Ctrl-/ Maximizes and restores window.
Ctrl-T Tiles front panel and block dizgram windows.
Ctrl-F Finds objects or text.
Ctl-G Searches Vls for next instance of object or text.
Ctrl-Shift-G Searches Vls for previous instance of object or text.
Ctrl-Shift-F Displays the Search Results window.
Ctrl-Tab Cycles through LabVIEW windows.
Ctrl-Shift-Tab Cycles through LabVIEW windows in reverse order.
Ctrl-Shift-N Displays the Navigation window.
Ctrl-1 Displays the VI Properties dialog box.
Ctrl-L Displays the Error list window.
Ctrl-Y Displays the History window.
Ctrl-Shift-W Displays the All Windows dialog box.
s RIS,

Navigating the VI Hierarchy Window

Ctrl-D Redraws the window.
Crl-A Shows all Vis in the window.

- Displays the subVls and other nodes that make up
Cerk-click VI W1 you select in the window.
Enter ' Finds next node that matches the search string.
Shift-Enter Finds previous node that matches the search string.

1 After initiating a search by typing in the VI Hierarchy window.

File Operations

Ctrl-N Creates a new, blank VI.
Ctrl-0 Opens an existing VI
Ctrl-wW Closes the VI.

Curl-S Saves the VI.
Ctrl-Shift-S Saves all open files.
Ctrl-P Prints the window.
Cul-Q Quits LabVIEW.

ii

Ctrl-H Displays the Context window.

(Mac 0S) Press the Command-Shift-H keys.
Ctrl-Shift-L Locks the Context Help window.
Ctrl-? or F1 Displays the LabVIEW Help.

Refer to the LabVIEW Help for keyboard shortcut variations on other
system locales and keyboard layouts.

50

Quick Reference

ool and Palties |

Ctrl Switches to next most useful tool.
Shift Switches to Positioning tool.
Ctrl-Shift over open Switches to Scrolling tool.
space
Spacebar' I#;es between two most common
Shift-Tab! Enables automatic tool selection.
Cycles h four most common tools if
you disabled automatic tool selection by
Tab' clicking the Automatic Tool Selection
button. Otherwise, enables automatic
tool selection.
Navigates temporary Controls and
L s Functions palettes.
Enter Navigates into 2 temporary palette.
Esc Navigates out of a temporary palette.
Displays a temporary version of the
Shift-right-click Tools palette at the location of the
CUTSOr.
' If automatic tool selection is disabled.
Double-click subVl Displays subV! front panel.
Ctrl-double-click Dtsplays subV! block diagram and front
subVI panel.
Drag Vlicon to block PlaeesmatVIsaabVImﬂleblock
diagram diagram.
= = Places that VI as a subVl on the block
Shift-drag Vl icon
diagram with constants wired for controls
to block i that have non-default values.
Ctrl-right-click block
diagram and select Opens the front panel of that V1.
VI from palette
Ctl-R Runs the V1.
Ctrl-* Stops the VI.
Ctrl-M Changes to run or edit mode.
Ctrl-Run button Recompiles the current VI.
Ctrl-Shift-Run button Recompiles all Vls in memory.
Crl-41 Moves key focus inside an array or cluster.
Ctrl-1" Moves key focus outside an array or cluster.
Navigates the controls or indicators
Tab' aca:ur'ggng to tabbing order.
e Navigates backward through the controls
Shile-Tab? or indrcators.
" While the VI is running

Tutorial: Linear Algebra in LabVIEW

Double-click
Triple-click
Ctrl-—»
Ctrl-«

End
Ctrl-Home
Ctrl-End

Shift-Enter

¥¥¥§*"

Ctrl-1*
Ctrl-2"
Ctrl-3"
Ctrl-4*

1 In the Font dialog box.

Selects a single word in a string.
Selects an entire string.

Moves forward in string by one word.
Moves backward in string by one word.

Moves to beginning of current line in
string.

Moves to end of current line in string.
Moves to beginning of entire string.
Moves to end of entire string.

Adds new items when entering items in
enumerated type controls and constants,

ring controls and constants, or Case
structures.

Cancels current edit in a string.
Ends text entry.

Increases the current font size.
Decreases the current font size.
Displays the Font dialog box.
Changes to the Application font.
Changes to the System font.
Changes to the Dialog font.
Changes to the current font.

Cul-B Removes all broken wires.
Esc, right-click, or While wiring, cancels a wire you
click terminal started.
Single-click wire Selects one segment.
Double-click wire Selects a branch.
Triple-click wire Selects entire wire.
A While wiring, disables automatic
wire routing temporarily.

. While wiring, tacks down wire
Double-click without eon?\ecung it.

While wiring, switches the direction
spacebar of a wire between horizontal and

vertical.

While moving objects, toggles
spacebar automatic wgmgl .-
Ctrl-click input on function Switches the two input wires.
with two inputs
Shift-click While wiring, undoes last point

where you set a wire.

Note: The Ctrl key in these shortcuts coresponds to the Option or
Command key on Mzc OS and the Alt key on Limux.

Linear Algebra in LabVIEW

Hans-Petter Halvorsen

Copyright © 2018

E-Mail: hans.p.halvorsen@usn.no

Web: https://www.halvorsen.blog

Of410

“ |

[=]

https://www.halvorsen.blog

