
https://www.halvorsen.blog

Linear Algebra in LabVIEW
Hans-Petter Halvorsen, 2018-04-24

Preface
This document explains the basic concepts of Linear Algebra and how
you may use LabVIEW for calculation of these problems.

This document is available for download from:

https://www.halvorsen.blog/documents/tutorials

For more information about LabVIEW, visit my Blog:

https://www.halvorsen.blog

and:

https://www.halvorsen.blog/documents/programming/labview/

iii

Table of Contents
Preface... 2

Table of Contents .. iii

1 Introduction to LabVIEW .. 1

1.1 Dataflow programming ... 1

1.2 Graphical Programming .. 2

1.3 Benefits .. 2

1.4 LabVIEW MathScript RT Module ... 3

2 Introduction to Linear Algebra.. 4

2.1.1 Transpose ... 4

2.1.2 Diagonal.. 4

2.1.3 Matrix Multiplication .. 5

2.1.4 Matrix Addition ... 5

2.1.5 Determinant ... 5

2.1.6 Inverse Matrices ... 5

2.2 Eigenvalues... 6

2.3 Solving Linear Equations ... 6

2.4 LU factorization .. 7

2.5 The Singular Value Decomposition (SVD) .. 7

3 Linear Algebra Palette in LabVIEW.. 8

3.1 Vectors ... 9

3.2 Matrices ... 10

3.2.1 Transpose ... 10

iv Table of Contents

Tutorial: Linear Algebra in LabVIEW

3.2.2 Diagonal.. 11

3.2.3 Matrix Multiplication .. 12

3.2.4 Matrix Addition ... 13

3.2.5 Determinant ... 14

3.2.6 Inverse Matrices ... 15

3.3 Eigenvalues... 16

3.4 Solving Linear Equations ... 16

3.5 LU factorization .. 17

3.6 The Singular Value Decomposition (SVD) .. 19

4 LabVIEW MathScript RT Module ... 20

5 LabVIEW MathScript .. 21

5.1 Help .. 22

5.2 Examples .. 22

5.3 Useful commands ... 25

5.4 Flow Control ... 25

5.4.1 If-else Statement .. 25

5.4.2 Switch and Case Statement ... 26

5.4.3 For loop .. 26

5.4.4 While loop .. 26

5.5 Plotting ... 28

6 Linear Algebra Examples using MathScript ... 30

6.1 Vectors ... 30

6.2 Matrices ... 31

6.2.1 Transpose ... 31

6.2.2 Diagonal.. 32

6.2.3 Triangular ... 32

v Table of Contents

Tutorial: Linear Algebra in LabVIEW

6.2.4 Matrix Multiplication .. 33

6.2.5 Matrix Addition ... 33

6.2.6 Determinant ... 34

6.2.7 Inverse Matrices ... 35

6.3 Eigenvalues... 36

6.4 Solving Linear Equations ... 36

6.5 LU factorization .. 37

6.6 The Singular Value Decomposition (SVD) .. 38

6.7 Commands ... 39

7 MathScript Node .. 40

7.1 Transferring MathScript Nodes between Computers .. 42

7.2 Examples .. 42

7.3 Exercises ... 46

8 Whats Next?... 47

8.1 My Blog .. 47

8.2 Training .. 47

8.3 MathScript Functions.. 47

Quick Reference ... 49

1

1 Introduction to LabVIEW
LabVIEW (short for Laboratory Virtual Instrumentation Engineering Workbench) is a
platform and development environment for a visual programming language from National
Instruments. The graphical language is named "G". Originally released for the Apple
Macintosh in 1986, LabVIEW is commonly used for data acquisition, instrument control, and
industrial automation on a variety of platforms including Microsoft Windows, various flavors
of UNIX, Linux, and Mac OS X. Visit National Instruments at www.ni.com.

The code files have the extension “.vi”, which is an abbreviation for “Virtual Instrument”.
LabVIEW offers lots of additional Add-Ons and Toolkits.

This paper is part of a series with LabVIEW papers:

• Introduction to LabVIEW
• Linear Algebra in LabVIEW
• Data Acquisition and Instrument Control in LabVIEW
• Control Design and Simulation in LabVIEW
• Signal Processing in LabVIEW
• Datalogging and Supervisory Control in LabVIEW
• System identification in LabVIEW
• Model based Control in LabVIEW
• Advanced Topics in LabVIEW

Each paper may be used independently of each other.

1.1 Dataflow programming
The programming language used in LabVIEW, also referred to as G, is a dataflow
programming language. Execution is determined by the structure of a graphical block
diagram (the LV-source code) on which the programmer connects different function-nodes
by drawing wires. These wires propagate variables and any node can execute as soon as all
its input data become available. Since this might be the case for multiple nodes
simultaneously, G is inherently capable of parallel execution. Multi-processing and multi-
threading hardware is automatically exploited by the built-in scheduler, which multiplexes
multiple OS threads over the nodes ready for execution.

2 Introduction to LabVIEW

Tutorial: Linear Algebra in LabVIEW

1.2 Graphical Programming
LabVIEW ties the creation of user interfaces (called front panels) into the development cycle.
LabVIEW programs/subroutines are called virtual instruments (VIs). Each VI has three
components: a block diagram, a front panel, and a connector panel. The last is used to
represent the VI in the block diagrams of other, calling VIs. Controls and indicators on the
front panel allow an operator to input data into or extract data from a running virtual
instrument. However, the front panel can also serve as a programmatic interface. Thus a
virtual instrument can either be run as a program, with the front panel serving as a user
interface, or, when dropped as a node onto the block diagram, the front panel defines the
inputs and outputs for the given node through the connector pane. This implies each VI can
be easily tested before being embedded as a subroutine into a larger program.

The graphical approach also allows non-programmers to build programs simply by dragging
and dropping virtual representations of lab equipment with which they are already familiar.
The LabVIEW programming environment, with the included examples and the
documentation, makes it simple to create small applications. This is a benefit on one side,
but there is also a certain danger of underestimating the expertise needed for good quality
"G" programming. For complex algorithms or large-scale code, it is important that the
programmer possess an extensive knowledge of the special LabVIEW syntax and the
topology of its memory management. The most advanced LabVIEW development systems
offer the possibility of building stand-alone applications. Furthermore, it is possible to create
distributed applications, which communicate by a client/server scheme, and are therefore
easier to implement due to the inherently parallel nature of G-code.

1.3 Benefits
One benefit of LabVIEW over other development environments is the extensive support for
accessing instrumentation hardware. Drivers and abstraction layers for many different types
of instruments and buses are included or are available for inclusion. These present
themselves as graphical nodes. The abstraction layers offer standard software interfaces to
communicate with hardware devices. The provided driver interfaces save program
development time. The sales pitch of National Instruments is, therefore, that even people
with limited coding experience can write programs and deploy test solutions in a reduced
time frame when compared to more conventional or competing systems. A new hardware
driver topology (DAQmxBase), which consists mainly of G-coded components with only a
few register calls through NI Measurement Hardware DDK (Driver Development Kit)
functions, provides platform independent hardware access to numerous data acquisition

3 Introduction to LabVIEW

Tutorial: Linear Algebra in LabVIEW

and instrumentation devices. The DAQmxBase driver is available for LabVIEW on Windows,
Mac OS X and Linux platforms.

For more information about LabVIEW, visit my Blog: https://www.halvorsen.blog

1.4 LabVIEW MathScript RT Module
The LabVIEW MathScript RT Module is an add-on module to LabVIEW. With LabVIEW
MathScript RT Module you can:

• Deploy your custom .m files to NI real-time hardware
• Reuse many of your scripts created with The MathWorks, Inc. MATLAB® software and

others
• Develop your .m files with an interactive command-line interface
• Embed your scripts into your LabVIEW applications using the MathScript Node

4

2 Introduction to Linear
Algebra

Given a matrix A:

𝐴 = #
𝑎%% ⋯ 𝑎%'
⋮ ⋱ ⋮
𝑎*% ⋯ 𝑎*'

+ 		 ∈ 	𝑅*/'

Example:

𝐴 = 0 0 1
−2 −36

2.1.1 Transpose

The Transpose of matrix A:

𝐴7 = 00 −2
1 −36

2.1.2 Diagonal

The Diagonal elements of matrix A is the vector

𝑑𝑖𝑎𝑔(𝐴) = =

𝑎%%
𝑎>>
⋮
𝑎??

@ 	∈ 	𝑅?ABCD	(/,')

The Diagonal matrix Λ is given by:

Λ = =

𝜆% 0 ⋯ 0
0 𝜆> ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜆*

@ ∈ 	𝑅*/*

Given the Identity matrix I:

5 Introduction to Linear Algebra

Tutorial: Linear Algebra in LabVIEW

𝐼 = =

1 0 ⋯ 0
0 1 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1

@ ∈ 	𝑅*/'

2.1.3 Matrix Multiplication

Given the matrices 𝐴 ∈ 𝑅*/' and 𝐵 ∈ 𝑅'/?, then

𝐶 = 𝐴𝐵 ∈ 	𝑅*/?	

2.1.4 Matrix Addition

Given the matrices 𝐴 ∈ 𝑅*/' and 𝐵 ∈ 𝑅*/', then

𝐶 = 𝐴 + 𝐵 ∈ 	𝑅*/'	

2.1.5 Determinant

Given a matrix 𝐴 ∈ 𝑅*/*, then the Determinant is given:

det(𝐴) = |𝐴|

Given a 2x2 matrix

𝐴 = 0
𝑎%% 𝑎%>
𝑎>% 𝑎>>6 ∈ 	𝑅

>/>

Then

det(𝐴) = |𝐴| = 𝑎%%𝑎>> − 𝑎>%𝑎%>

Notice that

det(𝐴𝐵) = det(𝐴) det(𝐵)

and

det(𝐴7) = det	(𝐴)

2.1.6 Inverse Matrices

The inverse of a quadratic matrix 𝐴 ∈ 𝑅*/* is defined by:

𝐴P%

6 Introduction to Linear Algebra

Tutorial: Linear Algebra in LabVIEW

if

𝐴𝐴P% = 𝐴P%𝐴 = 𝐼

For a 2x2 matrix we have:

𝐴 = 0
𝑎%% 𝑎%>
𝑎>% 𝑎>>6 ∈ 	𝑅

>/>

The inverse 𝐴P% is given by

𝐴P% =
1

det	(𝐴)
0
𝑎>> −𝑎%>
−𝑎>% 𝑎%% 6 ∈ 	𝑅

>/>

2.2 Eigenvalues
Given 𝐴 ∈ 𝑅*/*, then the Eigenvalues is defined as:

det(𝜆𝐼 − 𝐴) = 0

2.3 Solving Linear Equations
Given the linear equation

𝐴𝑥 = 𝑏

with the solution:

𝑥 = 𝐴P%𝑏

(Assuming that the inverse of A exists)

Example:

The equations

𝑥% + 2𝑥> = 5	
3𝑥% + 4𝑥> = 6

may be written

𝐴𝑥 = 𝑏

01 2
3 46 0

𝑥%
𝑥>6 = 0566

where

7 Introduction to Linear Algebra

Tutorial: Linear Algebra in LabVIEW

𝐴 = 01 2
3 46

𝑥 = 0
𝑥%
𝑥>6

𝑏 = 0566

2.4 LU factorization
LU factorization of 𝐴 ∈ 𝑅*/' is given by

𝐴 = 𝐿𝑈

where

L is a lower triangular matrix

U is a upper triangular matrix

Or sometimes LU factorization of 𝐴 ∈ 𝑅*/' is given by

𝐴 = 𝐿𝑈 = 𝐿𝐷𝑈

where

D is a diagonal matrix

2.5 The Singular Value Decomposition (SVD)
The Singular value Decomposition (SVD) of the matrix 𝐴 ∈ 𝑅*/' is given by

𝐴 = 𝑈𝑆𝑉7

where

U is a orthogonal matrix

V is a orthogonal matrix

S is a diagonal singular matrix

8

3 Linear Algebra Palette in
LabVIEW

For an Introduction to LabVIEW, see the training: “An Introduction to LabVIEW”. You may
download it from my Blog: http://home.hit.no/~hansha/

Use the Linear Algebra Palette in order to solve Linear Algebra problems with the use of
Graphical programming.

In the Matrix Sub Palette we have the following functions:

9 Linear Algebra Palette in LabVIEW

Tutorial: Linear Algebra in LabVIEW

LabVIEW uses arrays to represents vectors and matrices. A vector is represented as a one
dimensional array, while a matrix is represented as a two dimensional array.

In the Array, Matrix & Cluster Palette available from the Front Panel, we have the basic array
and matrix controls:

3.1 Vectors
Given a vector x

𝑥 = =

𝑥%
𝑥>
⋮
𝑥*

@ 	∈ 	𝑅*

10 Linear Algebra Palette in LabVIEW

Tutorial: Linear Algebra in LabVIEW

Example: Vectors

𝑥 = #
1
2
3
+

Implementing a vector in the Front Panel:

3.2 Matrices
Given a matrix A:

𝐴 = #
𝑎%% ⋯ 𝑎%'
⋮ ⋱ ⋮
𝑎*% ⋯ 𝑎*'

+ 		 ∈ 	𝑅*/'

Example: Matrices

𝐴 = 0 0 1
−2 −36

Front Panel:

3.2.1 Transpose

The Transpose of matrix A:

𝐴7 = #
𝑎%% ⋯ 𝑎*%
⋮ ⋱ ⋮

𝑎%' ⋯ 𝑎*'
+ 		 ∈ 	𝑅'/*

Example: Transpose

11 Linear Algebra Palette in LabVIEW

Tutorial: Linear Algebra in LabVIEW

𝐴7 = 0 0 1
−2 −36

7
= 00 −2

1 −36

Front Panel:

Block Diagram:

3.2.2 Diagonal

The Diagonal elements of matrix A is the vector

𝑑𝑖𝑎𝑔(𝐴) = =

𝑎%%
𝑎>>
⋮
𝑎??

@ 	∈ 	𝑅?ABCD	(/,')

Example: Diagonal

Front Panel:

Block Diagram:

The Diagonal matrix Λ is given by:

12 Linear Algebra Palette in LabVIEW

Tutorial: Linear Algebra in LabVIEW

Λ = =

𝜆% 0 ⋯ 0
0 𝜆> ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜆*

@ ∈ 	𝑅*/*

Given the Identity matrix I:

𝐼 = =

1 0 ⋯ 0
0 1 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1

@ ∈ 	𝑅*/'

Example: Identity Matrix

Front Panel:

Block Diagram:

3.2.3 Matrix Multiplication

Given the matrices 𝐴 ∈ 𝑅*/' and 𝐵 ∈ 𝑅'/?, then

𝐶 = 𝐴𝐵 ∈ 	𝑅*/?	

where

𝑐\] =^𝑎_𝑏_]

*

_A%

Example: Matrix Multiplication

Front Panel:

13 Linear Algebra Palette in LabVIEW

Tutorial: Linear Algebra in LabVIEW

Block Diagram:

Note!

𝐴𝐵 ≠ 𝐵𝐴

𝐴(𝐵𝐶) = (𝐴𝐵)𝐶

(𝐴 + 𝐵)𝐶 = 𝐴𝐶 + 𝐵𝐶

𝐶(𝐴 + 𝐵) = 𝐶𝐴 + 𝐶𝐵

→ Prove this in LabVIEW

3.2.4 Matrix Addition

Given the matrices 𝐴 ∈ 𝑅*/' and 𝐵 ∈ 𝑅*/', then

𝐶 = 𝐴 + 𝐵 ∈ 	𝑅*/'	

Example: Matrix Addition

Front Panel:

Block Diagram:

14 Linear Algebra Palette in LabVIEW

Tutorial: Linear Algebra in LabVIEW

Note! There is no special function for matrix addition, just use the standard add function in
the Numeric palette.

3.2.5 Determinant

Given a matrix 𝐴 ∈ 𝑅*/*, then the Determinant is given:

det(𝐴) = |𝐴|

Given a 2x2 matrix

𝐴 = 0
𝑎%% 𝑎%>
𝑎>% 𝑎>>6 ∈ 	𝑅

>/>

Then

det(𝐴) = |𝐴| = 𝑎%%𝑎>> − 𝑎>%𝑎%>

Example: Determinant

Front Panel:

Block Diagram:

Notice that

15 Linear Algebra Palette in LabVIEW

Tutorial: Linear Algebra in LabVIEW

det(𝐴𝐵) = det(𝐴) det(𝐵)

and

det(𝐴7) = det	(𝐴)

→ Prove this in LabVIEW

3.2.6 Inverse Matrices

The inverse of a quadratic matrix 𝐴 ∈ 𝑅*/* is defined by:

𝐴P%

if

𝐴𝐴P% = 𝐴P%𝐴 = 𝐼

For a 2x2 matrix we have:

𝐴 = 0
𝑎%% 𝑎%>
𝑎>% 𝑎>>6 ∈ 	𝑅

>/>

The inverse 𝐴P% is given by

𝐴P% =
1

det	(𝐴)
0
𝑎>> −𝑎%>
−𝑎>% 𝑎%% 6 ∈ 	𝑅

>/>

Example: Inverse

Front Panel:

Block Diagram:

Notice that:

𝐴𝐴P% = 𝐴P%𝐴 = 𝐼

16 Linear Algebra Palette in LabVIEW

Tutorial: Linear Algebra in LabVIEW

→ Prove this in LabVIEW

3.3 Eigenvalues
Given 𝐴 ∈ 𝑅*/*, then the Eigenvalues is defined as:

det(𝜆𝐼 − 𝐴) = 0

Example: Eigenvalues

Front Panel:

Block Diagram:

3.4 Solving Linear Equations
Given the linear equation

𝐴𝑥 = 𝑏

with the solution:

𝑥 = 𝐴P%𝑏

(Assuming that the inverse of A exists)

Example: Solving Linear Equations

The equations

𝑥% + 2𝑥> = 5	
3𝑥% + 4𝑥> = 6

17 Linear Algebra Palette in LabVIEW

Tutorial: Linear Algebra in LabVIEW

may be written

𝐴𝑥 = 𝑏

01 2
3 46 0

𝑥%
𝑥>6 = 0566

where

𝐴 = 01 2
3 46

𝑥 = 0
𝑥%
𝑥>6

𝑏 = 0566

The solution is:

Front Panel:

Block Diagram:

Or:

3.5 LU factorization
LU factorization of 𝐴 ∈ 𝑅*/' is given by

𝐴 = 𝐿𝑈

where

18 Linear Algebra Palette in LabVIEW

Tutorial: Linear Algebra in LabVIEW

L is a lower triangular matrix

U is a upper triangular matrix

Example: LU Factorization

Front Panel:

Block Diagram:

Or sometimes LU factorization of 𝐴 ∈ 𝑅*/' is given by

𝐴 = 𝐿𝑈 = 𝐿𝐷𝑈

where

D is a diagonal matrix

Example: LU Factorization

Front Panel:

Block Diagram:

19 Linear Algebra Palette in LabVIEW

Tutorial: Linear Algebra in LabVIEW

3.6 The Singular Value Decomposition (SVD)
The Singular value Decomposition (SVD) of the matrix 𝐴 ∈ 𝑅*/' is given by

𝐴 = 𝑈𝑆𝑉7

where

U is a orthogonal matrix

V is a orthogonal matrix

S is a diagonal singular matrix

Example: SVD Decomposition

Front Panel:

Block Diagram:

20

4 LabVIEW MathScript RT
Module

You can work with LabVIEW MathScript through either of two interfaces: the “LabVIEW
MathScript Interactive Window” or the “MathScript Node”.

You can work with LabVIEW MathScript RT Module through both interactive and
programmatic interfaces. For an interactive interface in which you can load, save, design,
and execute your .m file scripts, you can work with the “MathScript Interactive Window”. To
deploy your .m file scripts as part of a LabVIEW application and combine graphical and
textual programming, you can work with the “MathScript Node”.

The LabVIEW MathScript RT Module complements traditional LabVIEW graphical
programming for such tasks as algorithm development, signal processing, and analysis. The
LabVIEW MathScript RT Module speeds up these and other tasks by giving users a single
environment in which they can choose the most effective syntax, whether textual, graphical,
or a combination of the two. In addition, you can exploit the best of LabVIEW and thousands
of publicly available .m file scripts from the web, textbooks, or your own existing m-script
applications. LabVIEW MathScript RT Module is able to process your files created using the
current MathScript syntax and, for backwards compatibility, files created using legacy
MathScript syntaxes. LabVIEW MathScript RT Module can also process certain of your files
utilizing other text-based syntaxes, such as files you created using MATLAB software.
Because the MathScript RT engine is used to process scripts contained in a MathScript
Windows or MathScript Node, and because the MathScript RT engine does not support all
syntaxes, not all existing text-based scripts are supported.

LabVIEW MathScript RT Module supports most of the functionality available in MATLAB, the
syntax is also similar.

For more details, see http://zone.ni.com/devzone/cda/tut/p/id/3257

21

5 LabVIEW MathScript
Requires: MathScript RT Module

The “LabVIEW MathScript Window” is an interactive interface in which you can enter .m file
script commands and see immediate results, variables and commands history. The window
includes a command-line interface where you can enter commands one-by-one for quick
calculations, script debugging or learning. Alternatively, you can enter and execute groups of
commands through a script editor window.

As you work, a variable display updates to show the graphical / textual results and a history
window tracks your commands. The history view facilitates algorithm development by
allowing you to use the clipboard to reuse your previously executed commands.

You can use the “LabVIEW MathScript Window” to enter commands one at time. You also
can enter batch scripts in a simple text editor window, loaded from a text file, or imported
from a separate text editor. The “LabVIEW MathScript Window” provides immediate
feedback in a variety of forms, such as graphs and text.

Example:

22 LabVIEW MathScript

Tutorial: Linear Algebra in LabVIEW

5.1 Help
You may also type help in your command window

>>help

Or more specific, e.g.,

>>help plot

5.2 Examples
I advise you to test all the examples in this text in LabVIEW MathScript in order to get
familiar with the program and its syntax. All examples in the text are outlined in a frame like
this:

>>
…

23 LabVIEW MathScript

Tutorial: Linear Algebra in LabVIEW

This is commands you should write in the Command Window.

You type all your commands in the Command Window. I will use the symbol “>>” to
illustrate that the commands should be written in the Command Window.

Example: Matrices

Defining the following matrix

𝐴 = 01 2
0 36

The syntax is as follows:

>> A = [1 2;0 3]

Or

>> A = [1,2;0,3]

If you, for an example, want to find the answer to

𝑎 + 𝑏, 𝑤ℎ𝑒𝑟𝑒	𝑎 = 4, 𝑏 = 3

>>a=4
>>b=3
>>a+b

MathScript then responds:

ans =
 7

MathScript provides a simple way to define simple arrays using the syntax:
“init:increment:terminator”. For instance:

>> array = 1:2:9
array =
 1 3 5 7 9

defines a variable named array (or assigns a new value to an existing variable with the name
array) which is an array consisting of the values 1, 3, 5, 7, and 9. That is, the array starts at 1
(the init value), increments with each step from the previous value by 2 (the increment
value), and stops once it reaches (or to avoid exceeding) 9 (the terminator value).

The increment value can actually be left out of this syntax (along with one of the colons), to
use a default value of 1.

>> ari = 1:5
ari =

24 LabVIEW MathScript

Tutorial: Linear Algebra in LabVIEW

 1 2 3 4 5

assigns to the variable named ari an array with the values 1, 2, 3, 4, and 5, since the default
value of 1 is used as the incrementer.

Note that the indexing is one-based, which is the usual convention for matrices in
mathematics. This is atypical for programming languages, whose arrays more often start
with zero.

Matrices can be defined by separating the elements of a row with blank space or comma and
using a semicolon to terminate each row. The list of elements should be surrounded by
square brackets: []. Parentheses: () are used to access elements and subarrays (they are also
used to denote a function argument list).

>> A = [16 3 2 13; 5 10 11 8; 9 6 7 12; 4 15 14 1]
A =
 16 3 2 13
 5 10 11 8
 9 6 7 12
 4 15 14 1
>> A(2,3)
ans =
 11

Sets of indices can be specified by expressions such as "2:4", which evaluates to [2, 3, 4]. For
example, a submatrix taken from rows 2 through 4 and columns 3 through 4 can be written
as:

>> A(2:4,3:4)
ans =
 11 8
 7 12
 14 1

A square identity matrix of size n can be generated using the function eye, and matrices of
any size with zeros or ones can be generated with the functions zeros and ones, respectively.

>> eye(3)
ans =
 1 0 0
 0 1 0
 0 0 1
>> zeros(2,3)
ans =
 0 0 0
 0 0 0
>> ones(2,3)
ans =
 1 1 1

25 LabVIEW MathScript

Tutorial: Linear Algebra in LabVIEW

 1 1 1

5.3 Useful commands
Here are some useful commands:

Command Description

eye(x), eye(x,y) Identity matrix of order x

ones(x), ones(x,y) A matrix with only ones

zeros(x), zeros(x,y) A matrix with only zeros

diag([x y z]) Diagonal matrix

size(A) Dimension of matrix A

A’ Inverse of matrix A

5.4 Flow Control
This chapter explains the basic concepts of flow control in MathScript.

The topics are as follows:

• If-else statement
• Switch and case statement
• For loop
• While loop

5.4.1 If-else Statement

The if statement evaluates a logical expression and executes a group of statements when the
expression is true. The optional elseif and else keywords provide for the execution of
alternate groups of statements. An end keyword, which matches the if, terminates the last
group of statements. The groups of statements are delineated by the four keywords—no
braces or brackets are involved.

Example: If-Else Statement

Test the following code:

26 LabVIEW MathScript

Tutorial: Linear Algebra in LabVIEW

n=5
if n > 2
 M = eye(n)
elseif n < 2
 M = zeros(n)
else
 M = ones(n)
end

5.4.2 Switch and Case Statement

The switch statement executes groups of statements based on the value of a variable or
expression. The keywords case and otherwise delineate the groups. Only the first matching
case is executed. There must always be an end to match the switch.

Example: Switch and Case Statement

Test the following code:

n=2
switch(n)
 case 1
 M = eye(n)
 case 2
 M = zeros(n)
 case 3
 M = ones(n)
end

5.4.3 For loop

The for loop repeats a group of statements a fixed, predetermined number of times. A
matching end delineates the statements.

Example: For Loop

Test the following code:

m=5
for n = 1:m
 r(n) = rank(magic(n));
end
r

5.4.4 While loop

The while loop repeats a group of statements an indefinite number of times under control of
a logical condition. A matching end delineates the statements.

27 LabVIEW MathScript

Tutorial: Linear Algebra in LabVIEW

Example: While Loop

Test the following code:

m=5;
while m > 1
 m = m - 1;
 zeros(m)
end

28 LabVIEW MathScript

Tutorial: Linear Algebra in LabVIEW

5.5 Plotting
This chapter explains the basic concepts of creating plots in MathScript.

Topics:

• Basic Plot commands

Example: Plotting

Function plot can be used to produce a graph from two vectors x and y. The code:

x = 0:pi/100:2*pi;
y = sin(x);
plot(x,y)

produces the following figure of the sine function:

Example: Plotting

Three-dimensional graphics can be produced using the functions surf, plot3 or mesh.

[X,Y] = meshgrid(-10:0.25:10,-10:0.25:10);
f = sinc(sqrt((X/pi).^2+(Y/pi).^2));
mesh(X,Y,f);
axis([-10 10 -10 10 -0.3 1])
xlabel('{\bfx}')
ylabel('{\bfy}')
zlabel('{\bfsinc} ({\bfR})')

29 LabVIEW MathScript

Tutorial: Linear Algebra in LabVIEW

hidden off

This code produces the following 3D plot:

30 Linear Algebra Examples using MathScript

Tutorial: Linear Algebra in LabVIEW

6 Linear Algebra Examples
using MathScript

Requires: MathScript RT Module

Linear algebra is a branch of mathematics concerned with the study of matrices, vectors,
vector spaces (also called linear spaces), linear maps (also called linear transformations), and
systems of linear equations.

MathScript are well suited for Linear Algebra.

6.1 Vectors
Given a vector x

𝑥 = =

𝑥%
𝑥>
⋮
𝑥*

@ 	∈ 	𝑅*

Example: Vectors

Given the following vector

𝑥 = #
1
2
3
+

>> x=[1; 2; 3]
x =
 1
 2
 3

The Transpose of vector x:

𝑥7 = [𝑥% 𝑥> ⋯ 𝑥*] ∈ 	𝑅%/*

>> x'
ans =
 1 2 3

The Length of vector x:

31 Linear Algebra Examples using MathScript

Tutorial: Linear Algebra in LabVIEW

‖𝑥‖ = h𝑥7𝑥 = i𝑥%> + 𝑥>> + ⋯+ 𝑥*>

Orthogonality:

𝑥7𝑦 = 0

6.2 Matrices
Given a matrix A:

𝐴 = #
𝑎%% ⋯ 𝑎%'
⋮ ⋱ ⋮
𝑎*% ⋯ 𝑎*'

+ 		 ∈ 	𝑅*/'

Example: Matrices

Given the following matrix:

𝐴 = 0 0 1
−2 −36

>> A=[0 1;-2 -3]
A =
 0 1
 -2 -3

6.2.1 Transpose

The Transpose of matrix A:

𝐴7 = #
𝑎%% ⋯ 𝑎*%
⋮ ⋱ ⋮

𝑎%' ⋯ 𝑎*'
+ 		 ∈ 	𝑅'/*

Example: Transpose

Given the matrix:

𝐴7 = 0 0 1
−2 −36

7
= 00 −2

1 −36

>> A'
ans =
 0 -2
 1 -3

32 Linear Algebra Examples using MathScript

Tutorial: Linear Algebra in LabVIEW

6.2.2 Diagonal

The Diagonal elements of matrix A is the vector

𝑑𝑖𝑎𝑔(𝐴) = =

𝑎%%
𝑎>>
⋮
𝑎??

@ 	∈ 	𝑅?ABCD	(/,')

Example: Diagonal

Find the diagonal elements of matrix A:

>> diag(A)
ans =
 0
 -3

The Diagonal matrix Λ is given by:

Λ = =

𝜆% 0 ⋯ 0
0 𝜆> ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜆*

@ ∈ 	𝑅*/*

Given the Identity matrix I:

𝐼 = =

1 0 ⋯ 0
0 1 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1

@ ∈ 	𝑅*/'

Example: Identity Matrix

Get the 3x3 Identity matrix:

>> eye(3)
ans =
 1 0 0
 0 1 0
 0 0 1

6.2.3 Triangular

Lower Triangular matrix L:

𝐿 = #
. 0 0
⋮ ⋱ 0
. ⋯ .

+

33 Linear Algebra Examples using MathScript

Tutorial: Linear Algebra in LabVIEW

Upper Triangular matrix U:

𝑈 = l
. ⋯ .
0 ⋱ ⋮
0 0 .

m

6.2.4 Matrix Multiplication

Given the matrices 𝐴 ∈ 𝑅*/' and 𝐵 ∈ 𝑅'/?, then

𝐶 = 𝐴𝐵 ∈ 	𝑅*/?	

where

𝑐\] =^𝑎_𝑏_]

*

_A%

Example: Matrix Multiplication

Matrix multiplication:

>> A=[0 1;-2 -3]
A =
 0 1
 -2 -3
>> B=[1 0;3 -2]
B =
 1 0
 3 -2
>> A*B
ans =
 3 -2
 -11 6

Note!

𝐴𝐵 ≠ 𝐵𝐴

𝐴(𝐵𝐶) = (𝐴𝐵)𝐶

(𝐴 + 𝐵)𝐶 = 𝐴𝐶 + 𝐵𝐶

𝐶(𝐴 + 𝐵) = 𝐶𝐴 + 𝐶𝐵

6.2.5 Matrix Addition

Given the matrices 𝐴 ∈ 𝑅*/' and 𝐵 ∈ 𝑅*/', then

𝐶 = 𝐴 + 𝐵 ∈ 	𝑅*/'	

34 Linear Algebra Examples using MathScript

Tutorial: Linear Algebra in LabVIEW

Example: Matrix Addition

Matrix addition:

>> A=[0 1;-2 -3]
>> B=[1 0;3 -2]
>> A+B
ans =
 1 1
 1 -5

6.2.6 Determinant

Given a matrix 𝐴 ∈ 𝑅*/*, then the Determinant is given:

det(𝐴) = |𝐴|

Given a 2x2 matrix

𝐴 = 0
𝑎%% 𝑎%>
𝑎>% 𝑎>>6 ∈ 	𝑅

>/>

Then

det(𝐴) = |𝐴| = 𝑎%%𝑎>> − 𝑎>%𝑎%>

Example: Determinant

Find the determinant:

A =
 0 1
 -2 -3
>> det(A)
ans =
 2

Notice that

det(𝐴𝐵) = det(𝐴) det(𝐵)

and

det(𝐴7) = det	(𝐴)

35 Linear Algebra Examples using MathScript

Tutorial: Linear Algebra in LabVIEW

Example: Determinant

Determinants:

>> det(A*B)
ans =
 -4
>> det(A)*det(B)
ans =
 -4
>> det(A')
ans =
 2
>> det(A)
ans =
 2

6.2.7 Inverse Matrices

The inverse of a quadratic matrix 𝐴 ∈ 𝑅*/* is defined by:

𝐴P%

if

𝐴𝐴P% = 𝐴P%𝐴 = 𝐼

For a 2x2 matrix we have:

𝐴 = 0
𝑎%% 𝑎%>
𝑎>% 𝑎>>6 ∈ 	𝑅

>/>

The inverse 𝐴P% is given by

𝐴P% =
1

det	(𝐴)
0
𝑎>> −𝑎%>
−𝑎>% 𝑎%% 6 ∈ 	𝑅

>/>

Example: Inverse Matrices

Inverse matrix:

A =
 0 1
 -2 -3
>> inv(A)
ans =
 -1.5000 -0.5000
 1.0000 0

Notice that:

36 Linear Algebra Examples using MathScript

Tutorial: Linear Algebra in LabVIEW

𝐴𝐴P% = 𝐴P%𝐴 = 𝐼

→ Prove this in MathScript

6.3 Eigenvalues
Given 𝐴 ∈ 𝑅*/*, then the Eigenvalues is defined as:

det(𝜆𝐼 − 𝐴) = 0

Example: Eigenvalues

Find the Eigenvalues:

A =
 0 1
 -2 -3
>> eig(A)
ans =
 -1
 -2

6.4 Solving Linear Equations
Given the linear equation

𝐴𝑥 = 𝑏

with the solution:

𝑥 = 𝐴P%𝑏

(Assuming that the inverse of A exists)

Example: Solving Linear Equations

Solving the following equation:

The equations

𝑥% + 2𝑥> = 5	
3𝑥% + 4𝑥> = 6

may be written

𝐴𝑥 = 𝑏

37 Linear Algebra Examples using MathScript

Tutorial: Linear Algebra in LabVIEW

01 2
3 46 0

𝑥%
𝑥>6 = 0566

where

𝐴 = 01 2
3 46

𝑥 = 0
𝑥%
𝑥>6

𝑏 = 0566

The solution is:

A =
 1 2
 3 4
>> b=[5;6]
b =
 5
 6
>> x=inv(A)*b
x =
 -4.0000
 4.5000

In MathScript you could also write “x=A\b”, which should give the same answer. This syntax
can also be used when the inverse of A don’t exists.

Example: Solving Linear Equations

Illegal operation:

>> A=[1 2;3 4;7 8]
>> x=inv(A)*b
??? Error using ==> inv
Matrix must be square.
>> x=A\b
x =
 -3.5000
 4.1786

6.5 LU factorization
LU factorization of 𝐴 ∈ 𝑅*/' is given by

𝐴 = 𝐿𝑈

where

38 Linear Algebra Examples using MathScript

Tutorial: Linear Algebra in LabVIEW

L is a lower triangular matrix

U is a upper triangular matrix

The MathScript syntax is [L,U]=lu(A)

Example: LU Factorization

Find L and U:

>> A=[1 2;3 4]
>> [L,U]=lu(A)
L =
 0.3333 1.0000
 1.0000 0
U =
 3.0000 4.0000
 0 0.6667

Or sometimes LU factorization of 𝐴 ∈ 𝑅*/' is given by

𝐴 = 𝐿𝑈 = 𝐿𝐷𝑈

where

D is a diagonal matrix

The MathScript syntax is [L,U,P]=lu(A)

Example: LU Factorization

Find L, U and P:

>> A=[1 2;3 4]
A =
 1 2
 3 4
>> [L,U,P]=lu(A)
L =
 1.0000 0
 0.3333 1.0000
U =
 3.0000 4.0000
 0 0.6667
P =
 0 1
 1 0

6.6 The Singular Value Decomposition (SVD)

39 Linear Algebra Examples using MathScript

Tutorial: Linear Algebra in LabVIEW

The Singular value Decomposition (SVD) of the matrix 𝐴 ∈ 𝑅*/' is given by

𝐴 = 𝑈𝑆𝑉7

where

U is a orthogonal matrix

V is a orthogonal matrix

S is a diagonal singular matrix

Example: SVD Decomposition

Find S, V and D:

>> A=[1 2;3 4];
>> [U,S,V] = svd(A)
U =
 -0.4046 -0.9145
 -0.9145 0.4046
S =
 5.4650 0
 0 0.3660
V =
 -0.5760 0.8174
 -0.8174 -0.5760

6.7 Commands

Command Description

[L,U]=lu(A)

[L,U,P]=lu(A)
LU Factorization

[U,S,V] = svd(A) Singular Value Decomposition (SVD)

40

7 MathScript Node
The “MathScript Node” offers an intuitive means of combining graphical and textual code
within LabVIEW. The figure below shows the “MathScript Node” on the block diagram,
represented by the blue rectangle. Using “MathScript Nodes”, you can enter .m file script
text directly or import it from a text file.

You can define named inputs and outputs on the MathScript Node border to specify the data
to transfer between the graphical LabVIEW environment and the textual MathScript code.

You can associate .m file script variables with LabVIEW graphical programming, by wiring
Node inputs and outputs. Then you can transfer data between .m file scripts with your
graphical LabVIEW programming. The textual .m file scripts can now access features from
traditional LabVIEW graphical programming.

The MathScript Node is available from LabVIEW from the Functions Palette: Mathematics →
Scripts & Formulas

41 MathScript Node

Tutorial: Linear Algebra in LabVIEW

If you click Ctrl+H you get help about the MathScript Node:

Click “Detailed help” in order to get more information about the MathScript Node.

Use the NI Example Finder in order to find examples:

42 MathScript Node

Tutorial: Linear Algebra in LabVIEW

7.1 Transferring MathScript Nodes between
Computers

If a script in a MathScript Node calls a user-defined function, LabVIEW uses the default
search path list to link the function call to the specified .m file. After you configure the
default search path list and save the VI that contains the MathScript Node, you do not need
to reconfigure the MathScript search path list when you open the VI on a different computer
because LabVIEW looks for the .m file in the directory where the .m file was located when
you last saved the VI. However, you must maintain the same relative path between the VI
and the .m file.

7.2 Examples
Example: Using the MathScript Node

Here is an example of how you use the MathScript Node. On the left border you connect
input variables to the script, on the right border you have output variables. Right-click on the
border and select “Add Input” or “Add Output”.

43 MathScript Node

Tutorial: Linear Algebra in LabVIEW

Example: Calling a Windows DLL:

Example: Using m-files in the MathScript Node:

Use the LabVIEW MathScript to create a m-file script (or you may use MATLAB to create the
same script):

44 MathScript Node

Tutorial: Linear Algebra in LabVIEW

Right-click on the border of the MathScript Node and select “Import”, and then select the m-
file you want to import into the Node.

45 MathScript Node

Tutorial: Linear Algebra in LabVIEW

Right-click on the right border and select “Add Output”. Then right-click on the output
variable and select “Create Indicator”.

Block Diagram:

The result is as follows (click the Run button):

If you, e.g., add the following command in the MathScript Node: plot(x), the following window
appears:

46 MathScript Node

Tutorial: Linear Algebra in LabVIEW

7.3 Exercises
Use the MathScript Node and test the same examples you did in the previous chapter
(Chapter 6 - “Linear Algebra Examples using MathScript”)

47

8 Whats Next?

8.1 My Blog
For more information about LabVIEW, visit my Blog: https://www.halvorsen.blog

8.2 Training
This Training is a part of a series with other Training Kits I have made, such as:

• Introduction to LabVIEW
• Data Acquisition in LabVIEW
• Control and Simulation in LabVIEW
• LabVIEW MathScript
• Linear Algebra in LabVIEW
• Datalogging and Supervisory Control in LabVIEW
• Wireless Data Acquisition in LabVIEW
• Intermediate Topics in LabVIEW
• Advanced Topics in LabVIEW

These Training Kits are available for download from my blog: https://www.halvorsen.blog

8.3 MathScript Functions
In the Help system there is detailed information about all the MathScript functions available.
In addition to the MathScript RT Module functions, different add-on modules and toolkits
installs additional functions. The LabVIEW Control Design and Simulation Module and
LabVIEW Digital Filter Design Toolkit installs a lot of additional functions.

48 MathScript Node

Tutorial: Linear Algebra in LabVIEW

49

Quick Reference

50 Quick Reference

Tutorial: Linear Algebra in LabVIEW

Linear Algebra in LabVIEW

Hans-Petter Halvorsen

Copyright © 2018

E-Mail: hans.p.halvorsen@usn.no

Web: https://www.halvorsen.blog

https://www.halvorsen.blog

